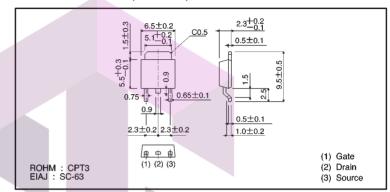
Small switching (60V, 5A) 25K2503

Features


- 1) Low on-resistance.
- 2) Fast switching speed.
- 3) Wide SOA (safe operating area).
- 4) Low-voltage drive (4V).
- 5) Easily designed drive circuits.
- 6) Easy to use in parallel.

Structure

Silicon N-channel

MOSFET

External dimensions (Units: mm)

● Absolute maximum ratings (Ta = 25°C)

Parameter		Symbol	Limits	Unit	
Drain-source voltage		Voss	60	V	
Gate-source voltage		Vgss	±20	V	
Danie august	Continuous	lo	5	A	
Drain current	Pulsed	IDP*	20	А	
Reverse drain	Continuous	IDR	5	A	
current	Pulsed	IDRP*	20	Α	
Total power dissipation (Tc=25℃)		Po	20	W	
Channel temperature		Tch	150	Ĉ	
Storage temperature		Tstg	-55~ + 150	°C	

^{*} Pw≦10 μs, Duty cycle≦1%

Packaging specifications

	Package	Taping				
Type	Code	TL				
	Basic ordering unit (pieces)	2500	c"sloba	01:	oïo	dini
2SK2	503	0			プラ	

Transistors 2SK2503

●Electrical characteristics (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Gate-source leakage	lgss	_	_	±100	nA	V _{GS} =±20V, V _{DS} =0V
Drain-source breakdown voltage	V(BR)DSS	60	_	_	٧	In=1mA, VGS=0V
Zero gate voltage drain current	Ibss	_	_	10	μΑ	V _{DS} =60V, V _{GS} =0V
Gate threshold voltage	VGS(th)	1.0	_	2.5	٧	V _{DS} =10V, I _D =1mA
Static drain-source on-state resistance	D	_	0.11	0.135	0	In=2.5A, Vgs=10V
	RDS(on)	_	0.17	0.20	Ω	In=2.5A, Vgs=4V
Forward transfer admittance	Yfs *	4.0	_	_	S	ID=2.5A, VDS=10V
Input capacitance	Ciss	_	520	_	pF	V _{DS} =10V
Output capacitance	Coss	_	240	_	рF	V _{GS} =0V
Reverse transfer capacitance	Crss	_	100	_	pF	f=1MHz
Turn-on delay time	td(on)		5.0	_	ns	ID=2.5A, VDD≒30V
Rise time	tr	_	20	_	ns	V _{GS} =10V
Turn-off delay time	td(off)	_	50	_	ns	RL=12Ω
Fall time	tr	_	20	_	ns	R _G =10 Ω

^{*} Pw≦300 μs, Duty cycle≦1%

Electrical characteristic curves

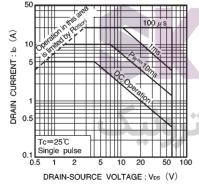


Fig.1 Maximum safe operating area

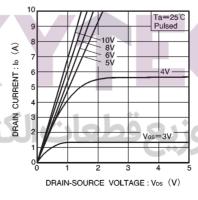


Fig.2 Typical output characteristics

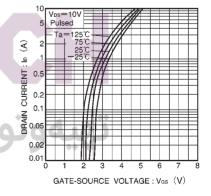
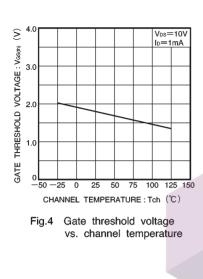
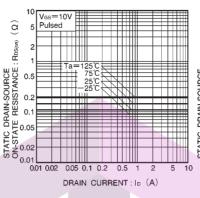




Fig.3 Typical transfer characteristics

Transistors 2SK2503

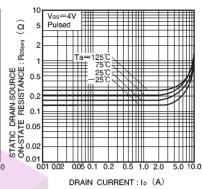
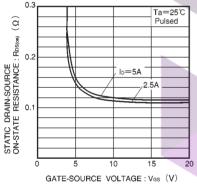
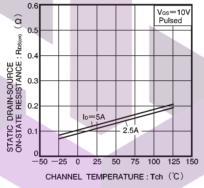




Fig.5 Static drain-source on-state resistance vs. drain current (I)

Fig.6 Static drain-source on-state resistance vs. drain current (II)

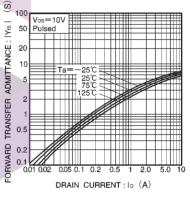
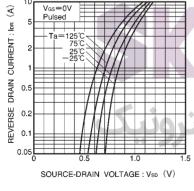
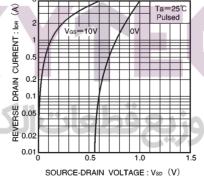




Fig.7 Static drain-source on-state resistance vs. gate-source voltage

Fig.8 Static drain-source on-state resistance vs. channel temperature

Fig.9 Forward transfer admittance vs. drain current

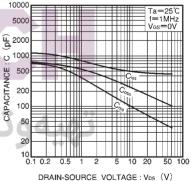
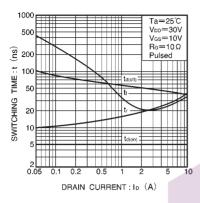



Fig.10 Reverse drain current vs. source-drain voltage (I)

Fig.11 Reverse drain current vs. source-drain voltage (I)

Fig.12 Typical capacitance vs. drain-source voltage

Transistors 2SK2503

1000 Ta=25°C di/dt=50A/ μs V_{GS=OV} Pulsed 100 100.1 0.2 0.5 1 2 5 10 REVERSE DRAIN CURRENT: IDR (A)

Fig.13 Switching characteristics (See Figures 16 and 17 for the measurement circuit and resultant waveforms)

Fig.14 Reverse recovery time vs. reverse drain current

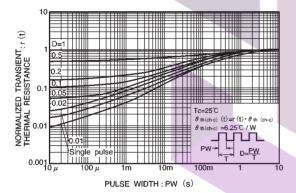


Fig.15 Normalized transient thermal resistance vs. pulse width

 Switching characteristics measurement circuit

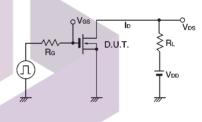


Fig.16 Switching time measurement circuit

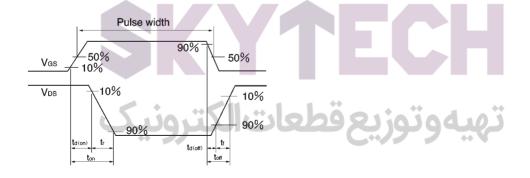


Fig.17 Switching time waveforms